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Dipartimento di Fisica, Università della Calabria INFN - Gruppo collegato di Cosenza, 87036 Rende (CS), Italy

Received 5 January 2005
Published online 30 May 2005 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

Abstract. We discuss the problem of a N two-level systems interacting with a single radiation mode in
the strong-coupling regime. The thermodynamic properties of Dicke model are analyzed developing a
perturbative expansion of the partition function in the high-temperature limit and we use this method to
investigate the connections between the Dicke and the collective one-dimensional Ising model.

PACS. 42.50.Fx Cooperative phenomena in quantum optical systems – 05.70.Jk Critical point phenomena
– 73.43.Nq Quantum phase transition

1 Introduction

The thermodynamic properties of the Dicke model [1] for
N two-level system interacting with a single mode of the
radiation field have been studied extensively by differ-
ent authors and with different methods [2–9]. Interest in
this model has been renewed by a number of theoretical
works, where it is discussed in connection with quantum
chaos [10,11] and entanglement [12–14] and for various
physical systems as photonic band gap materials [15,16]
and Josephson junctions [17].

The Dicke model exhibits a second-order phase tran-
sition and, after the first derivation due to Hepp and
Lieb [2], a simple computational method was provided by
Wang and Hioe [3] based on the use of Glauber’s coher-
ent states [18] for the radiation field and on the assump-
tion that, in the thermodynamic limit (N → ∞, V → ∞
but ρ = N/V finite), the field operators can be treated
as c-number functions. The Wang and Hioe method has
been recently applied by Lee and Johnson [16,19] to derive
the thermodynamic properties for an extended version of
the Dicke Hamiltonian incorporating spin-spin and spin-
boson interactions. Perturbative methods have recently
been proposed to perform thermodynamical calculations
without to have recourse to the Wang and Hioe compu-
tational method. In reference [20] it has been developed
a perturbative expansion of partition function and a sim-
ple analytic solution is found for high coupling constant.
The existence of this soluble model allows to show that
the interaction of independent atomic spins with a res-
onant photon mode can be interpreted as an effective
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spin-spin interaction of long range nature. The similar-
ity between the Dicke Model and the collective XY-model
has been found in reference [14], using another perturba-
tive approach in order to derive a temperature-dependent
effective atomic Hamiltonian. The prediction of a phase
transition has been criticized as obtained for nonrealis-
tic Hamiltonian, the simple Dicke Hamiltonian in which
both the counter rotating terms and the diamagnetic term
are truncated, that violated gauge invariance. As a mat-
ter of fact, the critical properties do not changes quali-
tatively when the counter rotating terms are taken into
account [5] but, when the diamagnetic term is included,
the Super-radiant Phase Transition (SPT) is forbidden to
occur [21]. The same conclusion has been obtained in ref-
erence [20] for a model Hamiltonian incorporating the ef-
fects of the diamagnetic term into a new frequency of the
photon mode [22].

In this paper we present a formal analysis which gen-
eralizes the results of reference [20] beyond the resonant
condition and gives an alternative derivation of some al-
ready known and recent results on the subject. In the next
section we analyze the procedure that permit to develop a
perturbative expansion of the partition function as gener-
ally found in literature. The Dicke Model is introduced
in Section 3 and a simple expression for the partition
function is analytically derived in Sections 4 and 5 for
high value of the coupling constant. This general result,
as shown in Appendix A, is independent of the choice
for the basis for expressing the state of radiation field.
Some special cases of interest are explored and the salient
features of the thermodynamic phase transition are dis-
cussed in Section 6 and in Section 7, where we also discuss
the analogies between the Dicke model and the collective
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one-dimensional Ising model. In Section 8 we draw our
final conclusions.

2 Perturbation expansion of partition function

The starting point for deriving the thermodynamic prop-
erties of a quantum model defined by an Hamiltonian H
is the partition function:

Z(N, T ) = Tr
{
e−βH

}
(1)

It is generally difficult to diagonalize e−βH and a variety of
systematic approximations has been proposed [23,24,27].
A convenient procedure is to introduce a separation

H = H0 + HI (2)

such that the exponential operator of (1) can be disen-
tangled into a product of an infinite series of exponential
operators as

e−β(H0+HI ) = e−βH0e−βHI

∞∏

i=2

e(−β)iCi (3)

where Ci is a homogeneous polynomial of degree n in H0

and HI . All the Ci
′
s contain the commutator [HI , H0]

and using the method given by Wilcox [26] they can be
determined as:

C2 =
1
2
[HI , H0] (4)

C3 = −1
6
[H0, [HI , H0]] − 1

3
[HI , [HI , H0]] (5)

with increasing complexity for higher i. The basic step in
the construction of approximants to the equation (3) is to
find a product of exponential operators which is correct up
to a certain power of β. The disentangled and undisentan-
gled form of equation (3) are expanded in terms of β and
operator coefficients of equal power of β are compared.
The result is that

e−β(H0+HI ) = e−βH0e−βHI + O(β2). (6)

A more accurate approximation is obtained by intro-
ducing the following symmetrized approximation of the
Hermitian operator e−βH :

e−β(H0+HI) = e−βH0/2e−βHI e−βH0/2 + O(β3), (7)

Obviously, the partition function obtained with using (7)
and (6) is identical due to the cyclic permutation property
of the trace. The error induced by the approximation

Tr
{
e−β(H0+HI )

}
= Tr

{
e−βH0e−βHI

}
(8)

can be estimated using the Hermitian approximation

e−β(H0+HI ) =

e−βH0/2e−βHI/2e−β3C3/4e−βHI/2e−βH0/2 + O(β5) (9)

and one obtains [24]

∣∣
∣Tr

{
e−β(H0+HI) − e−βH0/2e−βHI e−βH0/2

}∣∣
∣

<
β3

4
|Tr {C3}|

∣
∣Tr

{
e−βH0e−βHI

}∣∣ . (10)

3 The model

We use this method to study the thermodynamic proper-
ties of the Dicke model Hamiltonian (� = c = 1)

H = ωa†a +
N∑

i=1

[
ε

2
σz

i +
λ√
N

(a† + a)(σ+
i + σ−

i )
]

. (11)

Here, ω is the frequency of a single mode of radiation, ε is
the energy difference between the two levels of N identical
spin- 1

2 systems, σz
i , σ+

i and σ−
i are respectively the z com-

ponent, the raising and the lowering operators of the Pauli
matrices used to describe the ith spin, a and a† are the an-
nihilation and creation operators for photons. For N two-
level atoms the coupling constant is

λ = εd

√
2πρ

ω
(12)

where d is the projection of the transition dipole moment
on the polarization vector of the field mode and ρ the
density of the atoms.

We make the following separation:

H0 = ωa†a, (13)

HI =
ε

2
Sz +

λ√
N

(a† + a)(S+ + S−) (14)

where

S(z,±) =
N∑

i=1

σ
(z,±)
i (15)

are the collective atomic operators. By applying the
harmonic-oscillator commutation relations of the field
mode operators a†, a:

[a, a†] = 1, [a†a, a†] = a†, [a†a, a] = −a (16)

and that for the atomic operators:

[S+, S−] = Sz, [Sz, S±] = ±2S± (17)

it is easy to show that

C2 =
λω

2
√

N
(a − a†)(S− + S+)

C3 =
λω

6
√

N

[
ω(a + a†)

(
S+ + S−)+ 2ε(a − a†)

(
S− − S+

)

+
4λ√
N

(
S− + S+

)2
]
. (18)
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In order to evaluate the quality of the approximation we
calculate the trace of C3 that requires summation over
both the atomic and the field variables. A sum over atomic
variables is well-suited to calculating the trace, yielding

∑

S1=±1

· · ·
∑

SN=±1

〈S1 . . . SN |C3|S1 . . . SN 〉 =
4
3
λ2ω. (19)

The expression (8) is correct up to the third order in β (or
rather for β3λ2ω < 1), i.e. is an appropriate description
for the high-temperature limit.

Although it is possible to derive higher-order approxi-
mations of partition function in a systematic manner, the
increasing complexity of Ci for higher i now complicates
the expressions in such way that Z(N, T ) is very difficult
to evaluate analytically and requires numerical calcula-
tions [27]. It is important to note that also a good choice of
decomposing the Hamiltonian may affect the complexity
of the calculation and the error induced by the approx-
imation (8). A different separation was studied in refer-
ence [20], in the simplest case of exact resonance between
atom energy levels and frequency of radiation (ω = ε).
The approximations that one obtains from this choice is
derived splitting off from (14) the εSz/2 term too and is,
for this reason, less accurate.

4 Partition function: Atomic variables

In the form of equation (8), the partition function may
be performed analytically. Writing out explicitly the
trace over the atomic variables, the partition function is
given by

Z(N, T ) = TrF

{

e−βωa†a
∑

S1=±1

· · ·
∑

SN=±1

× 〈S1, . . . , SN |e−β
∑N

j=1 hj |S1, . . . , SN 〉
}

(20)

where
hj =

ε

2
σz

j +
λ√
N

(σ+
j + σ−

j )(a† + a). (21)

Noting that this operator has the property

[hi, hj ] = 0, (i �= j) (22)

from which it follows that

e−β
∑N

j=1 hj =
N∏

j=1

e−βhj (23)

we can reduce the partition function to the simpler form

Z(N, T ) = TrF

{

e−βωa†a

×
[
∑

S=±1

〈S|e−β
[

ε
2σz+ λ√

N
(a†+a)σx

]

|S〉
]N }

(24)

where σx ≡ σ++σ−. Expanding the exponential operators
in a power series, we obtain

e
−β

[
ε
2σz+ λ√

N
(a†+a)σx

]

=
∞∑

k=0

β2k

(2k)!

[
ε2

4
+

λ2

N
(a† + a)2

]k

×
[
I − β

2k + 1

(
ε

2
σz +

λ√
N

(a† + a)σx

)]
(25)

where we have used the following Pauli matrices properties

σ2
z = σ2

x = I, σzσx + σxσz = 0. (26)

Therefore, the sum of equation (24) is given by

∑

S=±1

〈S|e−β
[

ε
2σz+ λ√

N
(a†+a)σx

]

|S〉 =

2
∞∑

k=0

β2k

(2k)!

[
ε2

4
+

λ2

N
(a† + a)2

]k

. (27)

5 Partition function: Field variables

Using the Fock-state |n〉 for the photon field, the partition
function is given by

Z(N, T ) = 2N
∞∑

n=0

exp (−βωn)

× 〈n|
{ ∞∑

k=0

β2k

(2k)!

[
ε2

4
+

λ2

N
(a† + a)2

]k
}N

|n〉. (28)

Since the operator (a† + a) commutes with itself, the
power series appearing into the above equation can be
written
{ ∞∑

k=0

β2k

(2k)!

[
ε2

4
+

λ2

N
(a† + a)2

]k
}N

=

(
N∏

i=1

∞∑

ki=0

β2ki

(2ki)!

)

×
K∑

q=0

K!
q!(K − q)!

( ε

2

)2(K−q)
(

λ√
N

)2q

(a† + a)2q (29)

where K = k1 + · · ·+ kN . The matrix elements of photon
operators are

〈n|(a† + a)2q|n〉 =
d2q

dη2q
〈n|eη(a†+a)|n〉

∣
∣
∣∣
η=0

=
d2q

dη2q

[
e

η2
2 Ln(−η2)

]

η=0

(30)

where Ln(x) is the nth Laguerre polynomial. At this point
we are able to write down the partition function (28) as

Z(N, T ) = 2N

(
N∏

i=1

∞∑

ki=0

β2ki

(2ki)!

)
K∑

q=0

K!
q!(K − q)!

( ε

2

)2(K−q)

×
(

λ√
N

)2q
d2q

dη2q
e

η2

2

∞∑

n=0

e−βωnLn(−η2)

∣
∣
∣∣
∣
η=0

. (31)
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The sum over n is well known [28] to be given by

∞∑

n=0

e−βωnLn(−η2) =
1

1 − e−βω
exp

[
η2 1

eβω − 1

]
. (32)

Substituting this into equation (31) one obtains

Z(N, T ) =
2N

1 − e−βω

(
N∏

i=1

∞∑

ki=0

β2ki

(2ki)!

)
K∑

q=0

K!
q!(K − q)!

×
( ε

2

)2(K−q)
(

λ√
N

)2q
d2q

dη2q
e

η2

2 coth βω
2

∣
∣
∣
∣
η=0

. (33)

At this stage we use the following result

d2q

dη2q
e

η2
2 coth βω

2

∣
∣
∣
∣
η=0

= (2q − 1)!! cothq βω

2
, q ≥ 0 (34)

and the integral representation for the double factorial [28]

(2q − 1)!! =
1

2q+1
√

π

∫ ∞

−∞
dze−

z2
4 z2q. (35)

So, one has

Z(N, T ) =
1

1 − e−βω

2N

√
4π

∫ ∞

−∞
dze−

z2
4

(
N∏

i=1

∞∑

ki=0

β2ki

(2ki)!

)

×
K∑

q=0

K!
q!(K − q)!

( ε

2

)2(K−q)
(

λz√
2N

)2q

cothq βω

2

=
1

1 − e−βω

1√
4π

∫ ∞

−∞
dze−

z2
4

×
{

2
∞∑

k=0

β2k

(2k)!

[
ε2

4
+

λ2z2

2N
coth

βω

2

]k
}N

(36)

which can be written in the final form

Z(N, T ) =
1

1 − e−βω

1√
4π

∫ ∞

−∞
dze−

z2
4

×
{

2 cosh

[

β

√
ε2

4
+

λ2z2

2N
coth

(
βω

2

)]}N

(37)

where z is an order parameter. This result is independent
from the choice of different states as a basis for expressing
the state of radiation field and the same result can be
derived using the coherent states |α〉 for the photon field
(see Appendix A).

6 Phase transition: classical limit

The integral (37) may be evaluated in the limit N → ∞
by the steepest descent method. Writing the integral in

term of a new variable x = z/
√

N we search the value x̃
for which

f(x) = −x2

4
+ ln

{

2 cosh

[

β

√
ε2

4
+

λ2x2

2
coth

(
βω

2

)]}

(38)
is minimized. The minimum condition implies

βλ2 tanh

[

β

√
ε2

4
+

λ2x2

2
coth

(
βω

2

)]

=

tanh
(

βω

2

)√
ε2

4
+

λ2x2

2
coth

(
βω

2

)
. (39)

The existence of a nonzero solution of the above equation
means a phase transition. Through equation (39) we can
compute a critical temperature and we find

βc =
ε

2λ2

tanh (βcω/2)
tanh (βcε/2)

. (40)

The quantity 〈Sz〉 is of physical interest. We calculate it
as follows:

〈Sz〉 = − 2
β

∂

∂ε
ln Z(N, T ). (41)

From equation (39) we infer that

〈Sz〉
N

=






− tanh
(

βε
2

)
, β < βc;

− ε
2βλ2 tanh

(
βω
2

)
, β > βc.

(42)

A special case of interest is the limit reached when βω 	
1. In this limit the partition function, which is given by
equation (37), becomes

Z(N, T ) 
 1√
4πβω

∫ ∞

−∞
dze−

z2
4

×
[

2 cosh

(

β

√
ε2

4
+

λ2z2

Nβω

)]N

. (43)

Let

y2 =
z2

4Nβω
(44)

one has

Z(N, T ) 

√

N

βωπ

∫ ∞

−∞
dye−Nβωy2

×
[

2 cosh

(

β

√
ε2

4
+ 4λ2y2

)]N

(45)

that correspond to the partition function obtained with
the Wang and Hioe computational method. In this limit,
the square of the order parameter y represent the aver-
age number of photons. Just as for the Wang and Hioe
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result [5], the critical temperature is obtained from the
equation

tanh
(

βcε

2

)
=

ε ω

4λ2
(46)

and the model Hamiltonian (11) undergoes a phase tran-
sition at the critical value of the coupling constant λc =√

ε ω/2. For a coupling λ > λc, above the critical tem-
perature, the system is in the “normal phase”, whereas
for β > βc, the equation (39) has a solution x̃ �= 0 and
the system is in the so-called “super-radiant phase”. In
this region, the expectation value of the collective angular
momentum operator (42) is

〈Sz〉
N

=

{
− tanh

(
βε
2

)
, β < βc;

− εω
4λ2 , β > βc.

(47)

7 Phase transition: Ising limit

The equivalence between the Dicke Model and the one-
dimensional Ising Model for a system of mutually interact-
ing spins 1/2 embedded in a transverse magnetic field [29]
has been studied with different techniques [13,14,20].
This similarity emerges in our approximate scheme when
βε 	 1, where equation (40) becomes

tanh
(

βcω

2

)
= β2

c λ2. (48)

This result may be easily obtained observing that, in this
limit, our model is equivalent to a high-temperature ex-
pansion of the temperature-dependent effective Hamilto-
nian given by

H(β) = ω a†a +
ε

2
Sz − βλ2

2N
coth

(
βω

2

)
S2

x. (49)

This effective Hamiltonian is the lowest-order effective
Hamiltonian that can be obtained using the method of
reference [14] (see Appendix B). As an alternative to the
expression of Eq. (37), the partition function can be writ-
ten as

Z(N, T ) =
1

1 − e−βω

1√
4π

∫ ∞

−∞
dze−

z2
4

×TrA

{

e
−β

[
ε
2Sz+ λz√

2N

√
coth (βω

2 )Sx

]}

(50)

i.e., in the high temperature limit,

Z(N, T ) 
 1
1 − e−βω

1√
4π

∫ ∞

−∞
dze−

z2
4

× TrA

{
e−β ε

2Sz

e
βλz√
2N

√
coth (βω

2 )Sx

}

=
1

1 − e−βω
TrA

{
e−β ε

2Sz

e
β2λ2

2N coth (βω
2 )S2

x

}
. (51)

As in the most general case (37), we can write the integral
in term of x = z/

√
N and utilize (in the limit N → ∞)

the steepest descent method in order to search the value x̃
for which

f(x) = −x2

4
+ ln

{
2 cosh

(
βε

2

)

× cosh

[
βλz√
2N

√

coth
(

βω

2

)]}

(52)

is minimized. The minimum condition implies

x̃

2
=

βλ√
2

√

coth
(

βω

2

)
tanh

[
βλx̃√

2

√

coth
(

βω

2

)]

. (53)

The existence of a nonzero solution of the above equation
means a phase transition. Through equation (53) we can
compute a critical temperature that we find to be identical
to the result (48). The order parameter near the critical
temperature is

x̃ 
 2
√

3

√
β − βc

βc
. (54)

In the limit βcω 	 1, we get βc 
 ω/2λ2 and the interac-
tion of independent spins with a photon mode induce an
effective spin-spin interaction of long range nature that
may be described by the Hamiltonian

H = ω a†a − λ2

Nω
S2

x (55)

that is in agreement with the results of references [10,13].
Before leaving this section, we note that, for the special

case of exact resonance ω = ε, equation (40) reduces to

βc =
ε

2λ2
(56)

and this lead to the absence of a critical value of the cou-
pling constant, i.e. to the result that the phase transition
could occur even for λ < ε/2. However, the approxima-
tion that we have proposed is valid for β3

cλ2ω < 1 and
this condition permit us to derive accurate results only
for λ > ε/2, i.e. for coupling sufficiently higher that λc.

8 Conclusion

The thermodynamic properties of a system governed by
the Dicke Hamiltonian have been treated in the frame-
work of an approximate model, through a perturbative
expansion of partition function obtained by decomposing
the Hamiltonian into two non-commuting hermitian oper-
ators. This technique represent a practical and convenient
method to determinate the behavior of the Dicke model in
the strong-coupling regime. We have obtained a simple an-
alytic expression for the partition function and the critical
temperature is easily determined. This technique was then
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used to explore some limiting cases and old and recent re-
sults are derived in an elementary and unified way. Our
result extend those of reference [20] beyond the resonant
interaction condition and support the recent arguments
on the subject [13,14] concerning the similarity between
the Dicke and collective one-dimensional Ising model.

Appendix A: Coherent states

In terms of coherent states |α〉 [18], the partition function
is given by

Z(N, T ) = 2N

∫
d2α

π
〈α|e−βωa†a

×
{ ∞∑

k=0

β2k

(2k)!

[
ε2

4
+

λ2

N
(a† + a)2

]k
}N

|α〉 (57)

where a|α〉 = α|α〉 and
∫

d2α

π
|α〉〈α| = 1. (58)

Using the over-completeness of the field coherent
states (58) and the result

〈α|e−βωa†a|γ〉 = 〈α|γ〉e−α∗γ[1−exp(−βω)]. (59)

Equation (57) takes the form

Z(N, T ) = 2N

∫
d2α

π

∫
d2γ

π
〈α|γ〉e−α∗γ[1−exp(−βω)]

× 〈γ|
{ ∞∑

k=0

β2k

(2k)!

[
ε2

4
+

λ2

N
(a† + a)2

]k
}N

|α〉. (60)

The partition function may be derived from equation (29)
by computing the matrix element

〈γ|(a† + a)2q|α〉 =
d2q

dη2q
〈γ|eη(a†+a)|α〉

∣
∣
∣
∣
η=0

= 〈γ|α〉 d2q

dη2q
e

η2

2 eη(γ∗+α)

∣
∣
∣
∣
η=0

(61)

and by using
|〈α|γ〉|2 = e−|α−γ|2. (62)

One obtains

Z(N, T ) = 2N

(
N∏

i=1

∞∑

ki=0

β2ki

(2ki)!

)

×
K∑

q=0

K!
q!(K − q)!

( ε

2

)2(K−q)
(

λ√
N

)2q
d2q

dη2q
e

η2

2

×
∫

d2α

π

∫
d2γ

π
e−|α|2−|γ|2+γ∗α+α∗γe−βω+η(γ∗+α)

∣
∣
∣
∣
η=0

.

(63)

Recalling that the integration measure is defined to be
given by

d2α

π
=

dαdα∗

2i
=

d(Reα) d(Imα)
π

(64)

one finds the partition function expression of equa-
tion (33), i.e. the same result obtained with the use of
Fock states as a basis for the photon field. Finally, we
want to underline that our results are derived without the
c-number substitution for the field variables a → α, the
Wang and Hioe computational method, that permits to
deal with non-interacting atoms subjected to an external
magnetic field described by the amplitude α.

Appendix B: Effective Hamiltonian

In this Appendix we will discuss the approach to the prob-
lem of constructing effective atomic Hamiltonian for the
Dicke Model. The Zassenhaus formula (3) can be used to
obtain the following result:

e−βHI

∞∏

i=2

e(−β)iCi =
∞∑

i=0

(−β)i

i!
Pi (65)

where

Pi = Hi
I +

i∑

k=2

i!
(i − k)!

Hi−k
I Ck. (66)

The partition function of the whole system can be written
as [27]:

Z(N, T ) = TrA

[

TrF

(

e−βH0

∞∑

i=0

(−β)i

i!
Pi

)]

= TrF
(
e−βH0

)
TrA

(
e−βHeff

A

)
(67)

where

Heff
A = − 1

β
ln

〈 ∞∑

i=0

(−β)i

i!
Pi

〉

F

=
1
β

∞∑

q=1

(−1)q

q

( ∞∑

i=1

(−β)i

i!
〈Pi〉F

)q

(68)

where the thermal averaging is carried out
with respect to the field variables, i.e. 〈O〉F =
TrF

(
e−βH0O

)
/TrF

(
e−βH0

)
. Eq. (68) can be rewrit-

ten as

Heff
A =

∞∑

q=1

βq−1

q!
Qq (69)

where the lowest-order terms are

Q1 = 〈P1〉F ≡ 〈HI〉F =
ε

2
Sz,

Q2 = 〈P1〉2F − 〈P2〉F ≡ 〈HI〉2F − 〈H2
I 〉F

= −λ2

N
coth

(
βω

2

)
S2

x. (70)
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Therefore the lowest-order effective Hamiltonian is

Heff
A =

ε

2
Sz − βλ2

2N
coth

(
βω

2

)
S2

x (71)

in agreement with the result of reference [14].

Appendix C: Inclusion of diamagnetic term

In this Appendix we briefly discuss the inclusion of dia-
magnetic effects in our model. Following the discussion
of references [22] and [20], the diamagnetic term may be
incorporated in the Dicke Hamiltonian of equation (11),
without adding significant complication of the problem,
by using a new field-mode of frequency Ω instead of fre-
quency ω, which is given by

Ω =
√

ω(ω + 4k) (72)

where ωk = e2πρ/m. In terms of this new frequency, the
model Hamiltonian becomes

H = Ωa†a +
N∑

i=1

[
ε

2
σz

i +
Λ√
N

(a† + a)(σ+
i + σ−

i )
]

(73)

where

Λ = εd

√
2πρ

Ω
. (74)

The Hamiltonian (73) is formally identical to the
Hamiltonian (11) and can be used to derive thermody-
namic results. The phase transition that is obtained in
the limit of high coupling constant (Λ � Λc =

√
εΩ/2)

cannot occur due to sum-rule arguments [21] that requires
Λ <

√
εΩ/2.
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